
International Conference on Advances in Management & Technology (ICAMT- March 2025) 
 

ISSN: 2347-8578                                         www.ijcstjournal.org                                                  Page 229 

 
Enhanced Landslide Risk Assessment Using a Machine Learning- 

Enabled Prediction System withWeb Based Dashboard 
 

Dr. Purnima Rai  

Bachelor of Science in Information Technology  

Sadabai Raisoni Women’s College 

Nagpur, India 

poornima.champurkar@raisoni.net 

 

Ms. Juhi Karosiya 

Bachelor of Science in Information Technology 

Sadabai Raisoni Women’s College 

Nagpur, India 

karosiyajuhi@gmail.com 

Ms. Afrah Iqbal 

Bachelor of Science in Information Technology 

Sadabai Raisoni Women’s College 

Nagpur, India 

afrahiqbal10@gmail.com 

 

Ms. Sneha Jana 

Bachelor of Science in Information Technology 

Sadabai Raisoni Women’s College 

Nagpur, India 

snehajana1808@gmail.com 

 

ABSTRACT 
Landslides are extremely hazardous to the environment, infrastructure, and economy. Improvements in prediction 

technologies have included geosensors, wireless sensor networks, AI-based models, and IoT-based monitoring systems for 

improving real-time data processing. Machine learning algorithms such as Support Vector Machines (SVM) and Long 

Short-Term Memory (LSTM) networks enhance prediction accuracy even more, with geofencing supporting automated 

hazard monitoring and mitigation of risks.On this foundation, the current research offers a landslide forecasting system 

based on AI that combines geofencing and real-time sensor data. It uses vibration, rainfall, and soil moisture sensors, as 

well as GPS and an ESP32 microcontroller, to regularly update environmental factors. Arduino collects the data, and a pre-

trained AI model processes it before being displayed on ThingSpeak. A geofenced test location permits the AI model to 

forecast landslides, and a buzzer-enabled self-driving car with an RF module signals when crossing into danger zones. This 

work closes the bridge between AI-driven prediction models and real-time response to disasters, while investigating 

alternate communication techniques to enhance emergency response. 

Keywords— Landslide Prediction, Machine Learning, IoT-Based Monitoring, Wireless Sensor Networks, Geofencing, 

Real-Time Hazard Detection, AI-Driven Risk Assessment, Disaster Management, Environmental Monitoring, ThingSpeak 

Visualization. 

I. INTRODUCTION  

Landslides constitute one of the most devastating natural 

disasters, resulting in severe damage to human life, 

infrastructure, and the environment. Conventional 

techniques of landslide prediction basically depend upon 

geological surveys, empirical models, and rainfall 

thresholds. Although the methods serve some degree of risk 

assessment, they tend to be non-real-time responsive and 

lacking in precision. The recent advancements in technology 

of Internet of Things (IoT), machine learning (ML), and 

geospatial mapping have improved landslide monitoring and 

forecasting significantly.  

This paper introduces an IoT-supported, AI-driven landslide 

forecasting system, which integrates real-time 

environmental sensing with automated geofencing-based 

alerting. It uses rainfall, vibration, and soil moisture sensors 

along with ESP32 microcontrollers and cloud analytics to 

increase prediction precision and optimize disaster response 

efficacy.  

One of the most significant contributions of this research is 

the use of an AI-based landslide forecasting model that 

takes real-time sensor inputs to enhance the accuracy of 

forecasts. Another valuable addition is IoT geofencing for 

monitoring hazards. The system sets up a regulated 

geofenced area that initiates warnings automatically when 

unsafe situations are found. In addition, we utilize cloud-

based visualization and data processing through the 

ThingSpeak platform.  

Further, we suggest an autonomous warning system of 

hazards using an Arduino-governed vehicle with RF 

communication and a buzzer system. This vehicle navigates 

the geofence and dynamically responds to forecast landslide 

threats by giving prompt warnings. Finally, this study 

investigates other communication technologies to enhance 

emergency response effectiveness, particularly in rural or 

disaster-affected areas where conventional communication 

infrastructure could be unreliable.  

II. LITERATURE REVIEW 

A. Existing Systems 

Landslides pose a daunting risk to human life and 

infrastructure, necessitating early prediction and 

monitoring for disaster management (Pelletier et al., 1997) 

[1]. In the last decade, comprehensive studies have been ca

rried out on AI-driven landslide prediction, IoT-

based monitoring systems, geosensors, and real-time 

sensor networks to upgrade early warning mechanisms 
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(Lyu et al., 2022) [2]. Historically, landslide 

prediction approaches used rainfall thresholds, 

geological investigation, and empirical models, 

but advances in machine learning (ML) and Internet of 

Things (IoT) monitoring 

have vastly enhanced prediction efficiency and real-time 

hazard identification (Vignesh et al., 2021) [3]. 

Chaulya et al., created a wireless sensor network (WSN)-

based landslide prediction model that monitored soil 

displacement, ground water pressure, and slope 

movements. They applied a multivariate statistical analysis 

model to predict risk levels and alert via SMS and 

email alerts [4].   

The combination of wireless sensor networks (WSN), 

geofencing, AI-based models, and cloud-based 

visualization platforms like ThingSpeak has been 

extremely promising in the development of automatic and 

efficient landslide early warning systems (EWS) (Gatto et 

al., 2022) [5]. Various studies have explored the different 

aspects of real-time monitoring, satellite-based soil 

moisture analysis, machine learning-based landslide 

susceptibility mapping, and AI-assisted forecasting models 

(Misiano et al., 2022) [6]. However, despite these 

innovations, there remain a few challenges, including real-

time deployment, and dynamic AI models for improved 

predictive accuracy (Yin et al., 2023). [7] 

The hybrid landslide model Prakasam et al. developed 

could show how machine learning classification together 

with environmental monitoring via sensor data increased 

landslide prediction accuracy significantly [8]. Our own 

research, however, relied on rule-based threshold triggers 

only.  

One of the main developments in landslide observation has 

been the move from fixed geological assessments to 

sensor-based, real-time AI forecast. Lyu et al. (2022) 

designed an IoT-based landslide prediction model that 

tracked soil displacement, groundwater pressure, and slope 

movement. They employed a multivariate statistical 

analysis system to classify levels of risk and activate 

alarms through SMS and email notifications.  

Similarly, Vignesh et al. (2021) demonstrated how IoT 

sensors such as accelerometers and gyroscopes could be 

interfaced with a cloud platform (ThingSpeak) for remote 

landslide monitoring. They used Support Vector Machines 

(SVM) in MATLAB to predict terrain stability conditions 

and demonstrated that the application of machine learning 

methods significantly enhanced landslide detection 

accuracy. 

The hybrid landslide model forecast developed by Gatto et 

al. (2022) illustrated how pseudo-static physical modeling 

could be coupled with Multilayer Perceptron (MLP) Neural 

Networks to enhance prediction accuracy. Their method, 

which mixed physical and AI-based evaluations, had an 

AUC rating of 83.9%, showing that machine learning-

augmented predictions were far superior to traditional 

statistical models. 

Xing et al., in their research highlighted the significance 

of real-time geospatial risk mapping in landslide 

susceptibility zones. Through their research, they 

showed that AI-driven geofencing systems could 

dynamically reconfigure hazard zones in real-time, 

enhancing disaster response time substantially. [9] 

 

Mohan et al. [10] demonstrated the efficacy of an IoT based 

monitoring system that was integrated with sensors and 

cloud computing to improve and scale hazard detection. 

This shows how remote sensing proves useful in early 

warning systems  

 

Huang et al. [11] created a LoRaWAN powered landslide 

detection system which provided long range communication 

that was also energy-efficient, making is suited for landslide 

prone areas. 

 

Chen et al. [12] made strides in the field of geospatial risk 

mapping and proved that AI based geofencing improves 

landslide detection and enables automated alerts. 

Gong et al. [13] incorporated wireless sensor networks to 

predict landslides, and effectively demonstrated that a multi-

sensor approach was crucial in combination with AI models 

to improve prediction accuracy. 

 

The integration of ESP32 based sensors with the cloud, as 

integrated by Xing et al. emphasized the importance of 

cloud analytics and IoT networks in assessing landslide risk. 

 

Zhao et al. investigated multi-source satellite and IoT data 

fusion and showed that the hybrid models combining remote 

sensing with ground sensors enhance landslide prediction 

credibility. [14] 

 

B. Research Gap and Proposed Enhancements 

 

Despite significant strides being made on AI-powered 

landslide monitoring and sensor-based detection, 

essential research gaps persist in real-time deployment 

of AI, integration of geofencing, and automated alert in 

high-risk zones. 

 

Most of the earlier work, such as by Chaulya et al. and 

Vignesh et al., focused on data gathering and statistical 

analysis rather than actual AI-based real-time decision-

making. The present work bridges the gap by using a 

pre-trained AI model on Arduino that is capable of 

delivering real-time landslide predictions based on real-

time sensor inputs. 

Another significant shortcoming in geofencing for 

landslide-risk zones has been discovered. Although Liu 

et al. emphasized the advantages of geospatial hazard 

mapping, the majority of existing landslide early 

warning systems do not contain automated geofencing 

systems that physically limit or warn movement in 

danger zones. Our study combines a geofenced area, 

designed on Arduino, where sensor readings will 

influence landslide susceptibility. A mini car with a 
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buzzer system will serve as an alarm mechanism, 

sounding an alarm when moving into dangerous areas. 

 

Also, previous models by Prakasam et al. were 

dependent on fixed-threshold-based warning systems, 

and our work develops beyond this aspect by gathering 

current sensor data, passing it into an AI engine, and 

adapting risk levels in real time by utilizing ThingSpeak 

visualization. 

 

 

III. METHODOLOGY  

 

Initial machine learning (ML) model for this study 

was created to test the viability of landslide prediction from 

environmental data. The model had a pre-trained dataset and 

was run as a web application with an interactive user 

interface for assessing landslide risk. The main purpose of 

this initial deployment was to verify if machine learning 

methods could predict landslide events effectively prior to 

including real-time sensor inputs in subsequent stages.  

A. Phase I – Implementation of Machine Learning Model 

Our system relied on a pre-trained landslide dataset 

(landslide_dataset.csv), taken from Kaggle, which 

contained key environmental factors influencing landslides. 

The dataset included nine essential features: rainfall (mm), 

slope angle (°), soil saturation (0-1), vegetation cover (0-1), 

earthquake activity (magnitude), proximity to water (km), 

soil type (gravel, sand, silt), and landslide occurrence as a 

binary target variable (0 or 1). Before making predictions, 

the model preprocessed the user inputs using feature scaling 

through StandardScaler. The pre-trained scaler was loaded 

(scaler.pkl) at runtime to standardize user inputs before 

passing them to the machine learning model. 

The landslide prediction model was a classification model 

trained on labeled data using supervised learning and saved 

as landslide_model.pkl. At runtime, the model was 

loaded to predict the likelihood of a landslide based on user-

provided environmental conditions. It employed the 

predict_proba() function, which returned the probability of a 

landslide occurrence. The system used a threshold of 0.3, 

meaning that if the predicted probability exceeded 30%, a 

landslide risk was flagged. If the probability was below this 

threshold, the system indicated that conditions were stable. 

The formula of probability makes use of a weighted sum of 

input features like rainfall, slope gradient, soil moisture, and 

distance to water, the model estimates the cumulative effect 

of such parameters on the occurrence of landslides. The 

sigmoid function guarantees that the output of probability 

stays between 0 and 1, and it can be understood as a score of 

likelihood. 

 

We used several key Python libraries to develop and deploy 

this machine learning model. Joblib was used to load the 

pre-trained machine learning model and scaler. NumPy and 

Pandas were used to handle numerical data and load the 

dataset for normal condition comparisons. Matplotlib and 

Seaborn were integrated to generate bar charts for 

visualizing environmental condition comparisons. Finally, 

Scikit-Learn was used for data preprocessing and model 

predictions. 

We created the interface with Streamlit. Numerical 

and categorical inputs were used for rainfall, slope angle, 

soil saturation, vegetation cover, earthquake activity, and 

soil type. Because the model needed numerical inputs, 

categorical soil type data was represented in a numerical 

format by using one-hot encoding. Soil type data for Gravel, 

Sand, and Silt were converted to binary representation for 

compatibility with the machine learning model. 

 

Upon receiving user inputs, the model made 

predictions about whether or not a landslide would happen. 

If a landslide was predicted to happen, it showed a warning 

message in red along with a confidence level. If no landslide 

was found, a green success message was displayed, showing 

that conditions were stable. 

 

Apart from predictions, the system incorporated 

environmental change visualization by contrasting user 

inputs with average environmental conditions in the dataset. 

The model computed the mean values of environmental 

parameters for the chosen soil type and showed bar charts 

that emphasized deviations between user input values and 

normal conditions. These visualizations were done with 

Matplotlib and Seaborn, with blue bars showing normal 

conditions and red bars showing current input values. 

 
 

Figure 1(a): Graph comparing input values against normal 

threshold values for precipitation  
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Figure 1(b): Graph comparing input values against normal 

threshold values for soil moisture 

 

B. Phase II: Deployment of Real-Time Landslide Prediction 

System 

The next stage of our research is to extend the landslide 

prediction system to run in real-time by integrating 

environmental sensors, microcontrollers, and geofencing 

technology. The system will have rainfall, vibration, and 

soil moisture sensors, as well as a GPS module and an 

ESP32 microcontroller, to gather real-time information. This 

information will be processed on Arduino and displayed on 

ThingSpeak. A geofenced area, set on Arduino, will serve as 

a specific test area where landslide hazards will be 

simulated and sensor readings will be collected. 

The system includes several environmental sensors, each of 

which is vital to the monitoring of slope stability. A rain 

sensor monitors precipitation levels, a soil moisture sensor 

continuously monitors the level of saturation of the soil, and 

ground movement is sensed by a vibration sensor. The GPS 

module is used to offer geolocation information.  

All data acquired is sent to an Arduino microcontroller, 

preprocessed, filtered, and standardized there before passing 

on to the trained AI model. We shall design the AI model 

for deployment onto Arduino to achieve real-time sensor 

input processing and landslide risk classification. When the 

model detects environmental conditions that are equal to or 

above landslide risk levels, a forecast is made and 

transmitted to ThingSpeak, which visualizes the forecast in 

an online dashboard. The dashboard provides sensor trends, 

model forecasts, and landslide probability estimates. 

A geofencing system, designed on Arduino, is a testing 

ground where landslide scenarios are simulated and 

monitored real-time. If a landslide risk is detected by the AI 

model, the system initiates an automatic response. A 

miniature vehicle with a buzzer and RF, connected to 

Arduino, acts as a warning system. When this car drives into 

the geofenced zone, the buzzer automatically sounds, 

indicating that the area is dangerous. This simulation 

replicates actual use where people or cars entering a 

landslide-risk zone would be warned immediately, 

discouraging entry into high-risk zones. 

IV. RESULTS AND DISCUSSION 

Our landslide forecasting system effectively proved AI-

based risk estimation by categorizing landslide risks 

according to major environmental factors. The model gave 

probability-based forecasts, mapped environmental trends, 

and detected possible hazards with acceptable accuracy. The 

incorporation of data visualization methods enabled the 

comparison of real-time conditions with normal 

environmental values, providing greater insights into terrain 

stability. 

But few limitations were noted during this stage of 

evolution. The accuracy of the model is restricted by the 

training dataset, which would not be able to represent all 

variations that occur in natural environments. Since areas 

prone to landslides are tremendously diverse according to 

geological and climatic conditions and would need region-

specific training datasets. Also, readings from sensors are 

subject to noise from the environment, calibration fault, and 

limitations of hardware that may result in false positives or 

negatives in forecasts. 

One of the most significant limitations of geofencing is that 

it uses pre-specified boundaries, which might not be 

dynamic and adjust to changing terrain conditions. This 

could be solved through dynamic geofencing as a solution, 

which enables the updating of risk zones based on sensor 

data in real time. Enlarging the communication modes 

beyond geofencing—telecom towers, IoT networks, and 

satellite-based warning systems—are potential solutions that 

could enhance the scalability of the system. 

V. CONCLUSION AND FUTURE SCOPE 

Our study successfully established an artificial intelligence 

(AI)-driven landslide prediction model, showing machine 

learning's application for the effective assessment of hazard. 

Using geofencing and real-time visualization by means of 

ThingSpeak, the system forms the cornerstone of an 

automatic disaster surveillance model  

But this geofence-based warning system has some 

limitations regarding range, flexibility, and applicability in 

real-world scenarios. One of the main issues is that 

geofencing in a predetermined area means that hazards 

outside the defined zone might not be detected. Dai et al. 

[16] mentioned that changes in terrain, modifying landslide-

risk zones, and climate variability diminish the efficacy of 

static geofenced models. Also, real-time monitoring using 

sensors poses challenges in the form of network 

connectivity loss, sensor calibration faults, and delay in 

transmitting data  

To bridge these constraints, subsequent studies need to 

extend the system beyond geofencing by incorporating 

multi-network transmission techniques. A potential 

enhancement is sending landslide warnings through telecom 

towers so that warnings can be disseminated over cellular 

networks using SMS, push notifications, or emergency 

alerts. Despite that, telecom-based alerting also has 

network-coverage challenges where remote areas may pose 

http://www.ijcstjournal.org/


International Conference on Advances in Management & Technology (ICAMT- March 2025) 

ISSN: 2347-8578                                         www.ijcstjournal.org                                                  Page 233 

difficulties, and might demand multi-network backup via 

2G, 4G, or satellite-based communication  

Another promising strategy is the use of IoT-based Low-

Power Wide Area Networks (LPWANs) like LoRaWAN 

and NB-IoT, which support long-range, low-power data 

transmission appropriate for distant landslide-prone areas. 

These networks enable efficient transmission of sensor-

based risk data over large distances without the intervention 

of constant human monitoring. 

Subsequent implementations must also consider integration 

with roadside facilities and vehicle communication 

networks. By embedding smart LED traffic signs, 

autonomous sirens, and V2X communication modules, 

pedestrians and vehicles in dangerous areas may receive 

real-time danger alerts as they enter unstable regions. [17] 

The scope of this project in the future entails increasing the 

dataset of the AI model, incorporating increasingly varied 

environmental parameters, and optimizing adaptive learning 

to achieve higher prediction accuracy. Mechanisms for 

automated calibration of sensors should also be formulated 

to minimize errors due to environmental noise and hardware 

constraints [18]. In addition, the system may be 

supplemented by AI-based drones that carry geological 

scanning devices for real-time terrain inspection and 

landslide hazard mapping where physical sensors are not 

possible. 

By embracing an approach that multi-layers the use of 

geofencing, telecom-based alarms, IoT networks, and AI-

powered monitoring, this study has the potential to become 

a large-scale, internationally accessible early warning 

system. Through this hybrid method, landslide hazard 

assessments will be not only regional but also effective at 

large-scale hazard detection, ultimately minimizing casualty 

and infrastructure losses in landslide-endangered areas all 

over the globe. 
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